

Molten salt-loop development acceleration with distributed single-crystal harsh-environment optical fiber-sensors

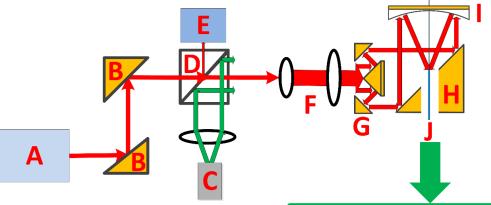
Presented by: Michael Buric, NETL

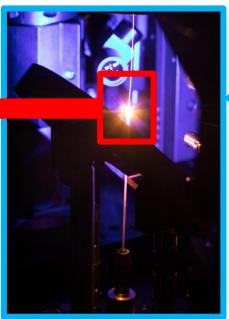
January, 15 2019

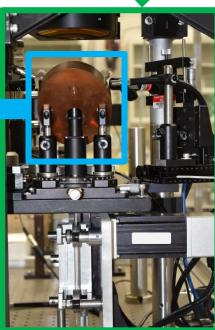
Project Objectives

- Introducing fully-distributed sensing to Molten-Salt Reactors
- Growing new cladded single-crystal optical fibers for molten-salt environments
- Gathering thousands of data-points to map reactor coolant-path temperatures or other parameters
- Mapping in-core temperature distributions
- Next-gen sensing replaces single-point sensors like thermocouples
- Providing data to guide reactor design and improvement through thermal

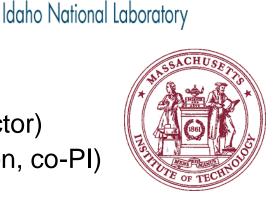

efficiency





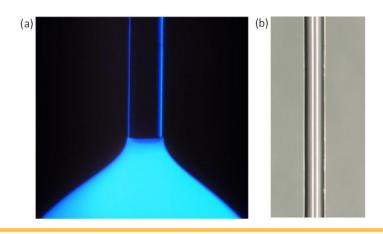

How LHPG works:

- CO2 laser melts oxide feedstock
- Seed crystal lowered into melt
- Controlled motion of seed and feedstock upward
- Fiber is grown from the melt



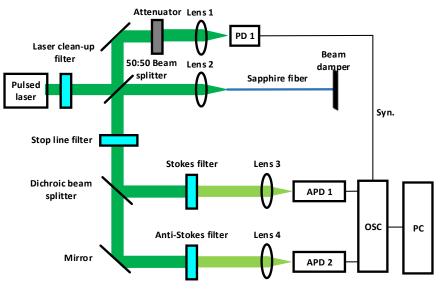
Team

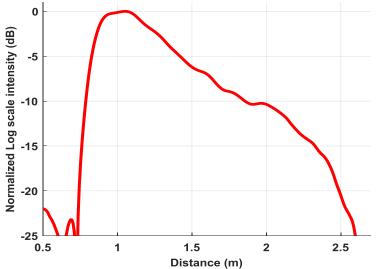
- National Energy Technology Lab (fiber growth, sensor design, interrogator design)
 - Michael Buric (PI, fiber optics and systems)
 - Bo Liu (LHPG)
 - Subhabrata Bera (crystal cladding)
- Idaho National Lab (reactor expertise, system implementation and testing)
 - Pattrick Calderoni
 (in-pile instrumentation director, co-PI)
 - Joshua Daw (nuclear instrumentation)
 - Ruchi Gakkar (nuclear materials)
- MIT (material compatibility, efficacy simulations)
 - David Carpenter (Irradiation Engineering Director)
 - Koroush Shirvan (reactor design and simulation, co-PI)



Project Accomplishments

- First project quarter completed
- World's longest single-crystal fibers produced (~20m)
- Unique Distributed Raman interrogator for sapphire optical fiber completed
- 2nd LHPG system under construction
 - Only facility to operate 2 systems for feedstock and cladding growth
- Molten-salt test systems under construction
- Techno-economic parameter analysis under construction



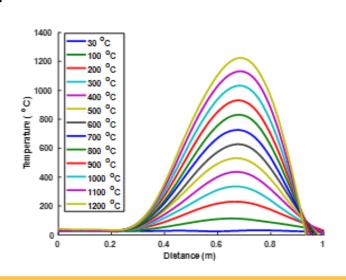

Future Plans

- Testing with Raman OTDR in salt baths, with gamma sources, and in the MIT Research Reactor
- Packaging preliminary work
- Longer-term operation

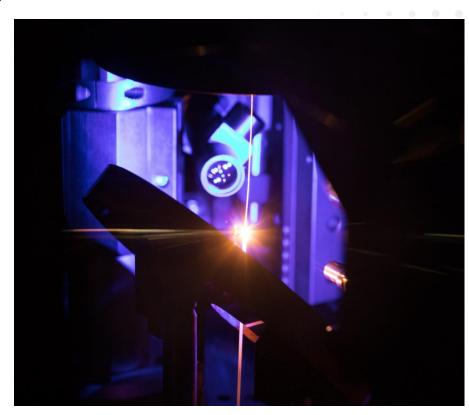
Raman OTDR, Liu et al Opt. Lett., 2016

Sapphire fiber attenuation at Virginia 532nm, measured by a Raman OTDR system

Crystal fiber distributed sensing Technology-to-Market


- Existing ROI on LHPG control algorithm, long-length fibers
- Ongoing T2M parameter study (MIT)
 - Which parameters (other than T) are most useful?
 - Which locations are highest value?
 - What efficiency gains can be made?
- Advisory interactions
 - Molten salt commercial developers poled
 - INL GAIN workshops
 - Pursue additional field testing for tech-transfer

Feedback


- After the first quarter what can we learn?
- Insight on field-testing challenges
- Guidance on industry acceptance
 - Existing electricity producers resistant to new tech
 - Regulatory constraints on new tech
- Input on sensor-data value proposition
 - Operator Data "wish-list"
 - Designer primary challenges

Conclusions

- Distributed sensing is coming to numerous industries
- Optical fiber technology can extend into nuclear harshenvironments
- Interdisciplinary efforts needed for advanced sensors and controls
- Further collaboration between fossil/nuclear sectors needed
- Amazing new levels of visibility and automation are here!

